On Efficient Constructions of Short Lists Containing Mostly Ramsey Graphs

نویسنده

  • Marius Zimand
چکیده

One of the earliest and best-known application of the probabilistic method is the proof of existence of a 2 logn-Ramsey graph, i.e., a graph with n nodes that contains no clique or independent set of size 2 logn. The explicit construction of such a graph is a major open problem. We show that a reasonable hardness assumption implies that in polynomial time one can construct a list containing polylog(n) graphs such that most of them are 2 logn-Ramsey.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Optimal Randomness Extractors and Ramsey Graphs

I will survey some of the recent exciting progress on explicit constructions of randomness extractors for independent sources. Many of the new constructions rely on explicit constructions of newly introduced pseudorandom primitives, and there remains scope of finding better explicit constructions of these primitives. I will also discuss some possible approaches for constructing optimal Ramsey g...

متن کامل

Some recent results on Ramsey-type numbers

In this paper we survey author’s recent results on quantitative extensions of Ramsey theory. In particular, we discuss our recent results on Folkman numbers, induced bipartite Ramsey graphs, and explicit constructions of Ramsey graphs.

متن کامل

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

Ramsey Graphs Induce Subgraphs of Many Different Sizes

A graph on n vertices is said to be C-Ramsey if every clique or independent set of the graph has size at most C log n. The only known constructions of Ramsey graphs are probabilistic in nature, and it is generally believed that such graphs possess many of the same properties as dense random graphs. Here, we demonstrate one such property: for any fixed C > 0, every C-Ramsey graph on n vertices i...

متن کامل

Low Rank Co-Diagonal Matrices and Ramsey Graphs

We examine n×nmatrices over Zm, with 0’s in the diagonal and nonzeros elsewhere. If m is a prime, then such matrices have large rank (i.e., n1/(p−1) − O(1) ). If m is a non-prime-power integer, then we show that their rank can be much smaller. For m = 6 we construct a matrix of rank exp(c √ log n log log n). We also show, that explicit constructions of such low rank matrices imply explicit cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013